About products of irreducible characters and products of conjugacy classes in finite groups
نویسندگان
چکیده
منابع مشابه
COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS
Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...
متن کاملSome connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups
Let $G$ be a finite group. We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$. In this paper we characterize solvable groups $G$ in which the derived covering number is finite.
متن کاملcomputing the products of conjugacy classes for specific finite groups
suppose $g$ is a finite group, $a$ and $b$ are conjugacy classes of $g$ and $eta(ab)$ denotes the number of conjugacy classes contained in $ab$. the set of all $eta(ab)$ such that $a, b$ run over conjugacy classes of $g$ is denoted by $eta(g)$.the aim of this paper is to compute $eta(g)$, $g in { d_{2n}, t_{4n}, u_{6n}, v_{8n}, sd_{8n}}$ or $g$ is a decomposable group of order $2pq$, a group of...
متن کاملProducts of Conjugacy Classes in Finite and Algebraic Simple Groups
We prove the Arad–Herzog conjecture for various families of finite simple groups — if A and B are nontrivial conjugacy classes, then AB is not a conjugacy class. We also prove that if G is a finite simple group of Lie type and A and B are nontrivial conjugacy classes, either both semisimple or both unipotent, then AB is not a conjugacy class. We also prove a strong version of the Arad–Herzog co...
متن کاملConjugacy Classes of Triple Products in Finite Groups
Let G be a finite group and let T1 denote the number of times a triple (x, y, z) ∈ G3 binds X, where X = {xyz, xzy, yxz, yzx, zxy, zyx}, to one conjugacy class. Let T2 denote the number of times a triple in G3 breaks X into two conjugacy classes. We have established the following results: i) the probability that a triple (x, y, z) ∈ D3 n binds X to one conjugacy class is ≥ 58 . ii) for groups s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1988
ISSN: 0021-8693
DOI: 10.1016/0021-8693(88)90304-3